Title: | Differential Evolution-Based Bayesian Inference |
---|---|
Description: | Bayesian inference algorithms based on the population-based "differential evolution" (DE) algorithm. Users can obtain posterior mode (MAP) estimates via DEMAP, posterior samples via DEMCMC, and variational approximations via DEVI. |
Authors: | Brendan Matthew Galdo [aut, cre]
|
Maintainer: | Brendan Matthew Galdo <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.1.0 |
Built: | 2025-03-12 03:12:49 UTC |
Source: | https://github.com/bmgaldo/debbi |
get control parameters for DEMAP function
AlgoParamsDEMAP( n_params, n_chains = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, crossover_rate = 1, parallel_type = "none", return_trace = FALSE, thin = 1 )
AlgoParamsDEMAP( n_params, n_chains = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, crossover_rate = 1, parallel_type = "none", return_trace = FALSE, thin = 1 )
n_params |
number of free parameters estimated |
n_chains |
number of particle chains, 3*n_params is the default value |
n_iter |
number of iterations to run the sampling algorithm, 1000 is default |
init_sd |
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution |
init_center |
scalar or n_params-dimensional numeric vector that determines the mean of the Gaussian initialization distribution |
n_cores_use |
number of cores used when using parallelization. |
step_size |
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params). |
jitter_size |
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. |
crossover_rate |
number on the interval (0,1]. Determines the probability a parameter on a chain is updated on a given crossover step, sampled from a Bernoulli distribution. |
parallel_type |
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. |
return_trace |
logical, if true, function returns particle trajectories. This is helpful for diagnosing convergence or debugging model code. Function will return an iteration/thin $x$ n_chains $x$ n_params array and the estimated ELBO of each particle in a iteration/thin x n_chains array. |
thin |
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running chains for longer. |
list of control parameters for the DEMAP function
AlgoParamsDEMCMC
AlgoParamsDEMCMC( n_params, n_chains = NULL, param_names = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, parallel_type = "none", burnin = 0, thin = 1 )
AlgoParamsDEMCMC( n_params, n_chains = NULL, param_names = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, parallel_type = "none", burnin = 0, thin = 1 )
n_params |
number of free parameters estimated |
n_chains |
number of MCMC chains, 3*n_params is the default value |
param_names |
optional vector of parameter names |
n_iter |
number of iterations to run the sampling algorithm, 1000 is default |
init_sd |
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution |
init_center |
scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution |
n_cores_use |
number of cores used when using parallelization. |
step_size |
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params) which is optimal for multivariate Gaussian target distribution (ter Braak, 2006) |
jitter_size |
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. |
parallel_type |
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. |
burnin |
number of initial iterations to discard. Default value is 0. |
thin |
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running chains for longer. |
list of control parameters for the DEMCMC function
get control parameters for DEVI function
AlgoParamsDEVI( n_params, param_names = NULL, n_chains = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, parallel_type = "none", use_QMC = TRUE, purify = NULL, quasi_rand_seq = "halton", n_samples_ELBO = 10, LRVB_correction = TRUE, n_samples_LRVB = 25, neg_inf = -750, thin = 1, burnin = 0, return_trace = FALSE, crossover_rate = 1 )
AlgoParamsDEVI( n_params, param_names = NULL, n_chains = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, parallel_type = "none", use_QMC = TRUE, purify = NULL, quasi_rand_seq = "halton", n_samples_ELBO = 10, LRVB_correction = TRUE, n_samples_LRVB = 25, neg_inf = -750, thin = 1, burnin = 0, return_trace = FALSE, crossover_rate = 1 )
n_params |
number of free parameters estimated |
param_names |
optional vector of parameter names |
n_chains |
number of particle chains used for optimization, 3*n_params is the default value |
n_iter |
number of iterations to run the sampling algorithm, 1000 is default |
init_sd |
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution |
init_center |
scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution |
n_cores_use |
number of cores used when using parallelization. |
step_size |
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params). |
jitter_size |
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. |
parallel_type |
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. |
use_QMC |
logical, if true, a quasi-Monte Carlo estimator is used to estimate ELBO during optimization. default is TRUE. |
purify |
an integer, every 'purify'-th iteration, the Monte Carlo estimator of the ELBO is recalculated. This can help deal with noisy and outlier estimates of the ELBO. Default value is 25. If use_QMC is TRUE, purification is disabled as it is redundant. |
quasi_rand_seq |
type of low discrepancy sequence used for quasi Monte Carlo integration, either 'sobol' or 'halton'. LRVB correction always use QMC. Default is 'sobol'. |
n_samples_ELBO |
number of samples used for the Monte Carlo estimator of the ELBO (the objective function). default is 10. |
LRVB_correction |
logical, if true, LRVB covariance correction (Giordano, Brodderick, & Jordan 2018; Galdo, Bahg, & Turner 2020) is attempted. |
n_samples_LRVB |
number of samples used for LRVB correction. default is 25. |
neg_inf |
if density for a given value of theta is numerically 0 for q, this value is assigned for log density. This helps with numeric stability of algorithm. Default value is -750. |
thin |
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running algorithm for longer. |
burnin |
number of initial iterations to discard. Default value is 0. |
return_trace |
logical, if true, function returns particle trajectories. This is helpful for diagnosing convergence or debugging model code. Function will return an iteration/thin $x$ n_chains $x$ n_params array and the estimated ELBO of each particle in a iteration/thin x n_chains array. |
crossover_rate |
number on the interval (0,1]. Determines the probability a parameter on a chain is updated on a given crossover step, sampled from a Bernoulli distribution. |
list of control parameters for the DEVI function
DE optimization for maximum a posteriori (MAP) estimation; his function tries to find the posterior mode.
DEMAP(LogPostLike, control_params = AlgoParamsDEMAP(), ...)
DEMAP(LogPostLike, control_params = AlgoParamsDEMAP(), ...)
LogPostLike |
function whose first argument is an n_params-dimensional model parameter vector and returns (scalar) sum of log prior density and log likelihood for the parameter vector. |
control_params |
control parameters for DE algorithm. see |
... |
additional arguments to pass LogPostLike |
list contain posterior samples from DEMCMC in a n_iters_per_chain by n_chains by n_params array and the log likelihood of each sample in a n_iters_per_chain by n_chains array.
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) # list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Get map estimates DEMAP( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEMAP( n_params = length(param_names_example), n_iter = 1000, n_chains = 12 ), data = dataExample, param_names = param_names_example )
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) # list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Get map estimates DEMAP( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEMAP( n_params = length(param_names_example), n_iter = 1000, n_chains = 12 ), data = dataExample, param_names = param_names_example )
Sample from posterior using Differential Evolution Markov Chain Monte Carlo
DEMCMC(LogPostLike, control_params = AlgoParamsDEMCMC(), ...)
DEMCMC(LogPostLike, control_params = AlgoParamsDEMCMC(), ...)
LogPostLike |
function whose first argument is an n_params-dimensional model parameter vector and returns (scalar) sum of log prior density and log likelihood for the parameter vector. |
control_params |
control parameters for DEMCMC algorithm. see |
... |
additional arguments to pass LogPostLike |
list contain posterior samples from DEMCMC in a 'n_samples_per_chain' by 'n_chains' by n_params array and the log posterior likelihood of each sample in a 'n_samples_per_chain' by 'n_chains' array.
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) # # list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Sample from posterior DEMCMC( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEMCMC( n_params = length(param_names_example), n_iter = 1000, n_chains = 12 ), data = dataExample, param_names = param_names_example )
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) # # list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Sample from posterior DEMCMC( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEMCMC( n_params = length(param_names_example), n_iter = 1000, n_chains = 12 ), data = dataExample, param_names = param_names_example )
DE optimization for mean-field variational inference. Minimizes the KL divergence (maximizes the ELBO) between $q(theta|lambda)$ and the target posterior $p(theta|data)$ For a tutorial on variational inference check out Galdo, Bahg, & Turner 2020.
DEVI(LogPostLike, control_params = AlgoParamsDEVI(), ...)
DEVI(LogPostLike, control_params = AlgoParamsDEVI(), ...)
LogPostLike |
function whose first argument is an n_params-dimensional model parameter vector and returns (scalar) sum of log prior density and log likelihood for the parameter vector. |
control_params |
control parameters for DE algorithm. see |
... |
additional arguments to pass LogPostLike |
list contain mean in a n_iters_per_chain by n_chains by 2*n_params_model array and the ELBO of each sample in a n_iters_per_chain by n_chains array.
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) ## list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Get variational approximation DEVI( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEVI( n_params = length(param_names_example), n_iter = 200, n_chains = 12 ), data = dataExample, param_names = param_names_example )
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) ## list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Get variational approximation DEVI( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEVI( n_params = length(param_names_example), n_iter = 200, n_chains = 12 ), data = dataExample, param_names = param_names_example )