Package: graDiEnt 1.0.1

graDiEnt: Stochastic Quasi-Gradient Differential Evolution Optimization

An optim-style implementation of the Stochastic Quasi-Gradient Differential Evolution (SQG-DE) optimization algorithm first published by Sala, Baldanzini, and Pierini (2018; <doi:10.1007/978-3-319-72926-8_27>). This optimization algorithm fuses the robustness of the population-based global optimization algorithm "Differential Evolution" with the efficiency of gradient-based optimization. The derivative-free algorithm uses population members to build stochastic gradient estimates, without any additional objective function evaluations. Sala, Baldanzini, and Pierini argue this algorithm is useful for 'difficult optimization problems under a tight function evaluation budget.' This package can run SQG-DE in parallel and sequentially.

Authors:Brendan Matthew Galdo [aut, cre]

graDiEnt_1.0.1.tar.gz
graDiEnt_1.0.1.zip(r-4.5)graDiEnt_1.0.1.zip(r-4.4)graDiEnt_1.0.1.zip(r-4.3)
graDiEnt_1.0.1.tgz(r-4.5-any)graDiEnt_1.0.1.tgz(r-4.4-any)graDiEnt_1.0.1.tgz(r-4.3-any)
graDiEnt_1.0.1.tar.gz(r-4.5-noble)graDiEnt_1.0.1.tar.gz(r-4.4-noble)
graDiEnt_1.0.1.tgz(r-4.4-emscripten)graDiEnt_1.0.1.tgz(r-4.3-emscripten)
graDiEnt.pdf |graDiEnt.html
graDiEnt/json (API)
NEWS

# Install 'graDiEnt' in R:
install.packages('graDiEnt', repos = c('https://bmgaldo.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/bmgaldo/gradient/issues

On CRAN:

Conda-Forge:

3.78 score 4 stars 4 scripts 234 downloads 2 exports 4 dependencies

Last updated 3 months agofrom:482bcf5eee. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 09 2025
R-4.5-winOKFeb 09 2025
R-4.5-macOKFeb 09 2025
R-4.5-linuxOKFeb 09 2025
R-4.4-winOKFeb 09 2025
R-4.4-macOKFeb 09 2025
R-4.3-winOKFeb 09 2025
R-4.3-macOKFeb 09 2025

Exports:GetAlgoParamsoptim_SQGDE

Dependencies:codetoolsdoParallelforeachiterators

Readme and manuals

Help Manual

Help pageTopics
GetAlgoParamsGetAlgoParams
optim_SQGDEoptim_SQGDE