Package: graDiEnt 1.1.0
graDiEnt: Stochastic Quasi-Gradient Differential Evolution Optimization
An optim-style implementation of the Stochastic Quasi-Gradient Differential Evolution (SQG-DE) optimization algorithm first published by Sala, Baldanzini, and Pierini (2018; <doi:10.1007/978-3-319-72926-8_27>). This optimization algorithm fuses the robustness of the population-based global optimization algorithm "Differential Evolution" with the efficiency of gradient-based optimization. The derivative-free algorithm uses population members to build stochastic gradient estimates, without any additional objective function evaluations. Sala, Baldanzini, and Pierini argue this algorithm is useful for 'difficult optimization problems under a tight function evaluation budget.' This package can run SQG-DE in parallel and sequentially.
Authors:
graDiEnt_1.1.0.tar.gz
graDiEnt_1.1.0.zip(r-4.5)graDiEnt_1.1.0.zip(r-4.4)graDiEnt_1.1.0.zip(r-4.3)
graDiEnt_1.1.0.tgz(r-4.4-any)graDiEnt_1.1.0.tgz(r-4.3-any)
graDiEnt_1.1.0.tar.gz(r-4.5-noble)graDiEnt_1.1.0.tar.gz(r-4.4-noble)
graDiEnt_1.1.0.tgz(r-4.4-emscripten)graDiEnt_1.1.0.tgz(r-4.3-emscripten)
graDiEnt.pdf |graDiEnt.html✨
graDiEnt/json (API)
NEWS
# Install 'graDiEnt' in R: |
install.packages('graDiEnt', repos = c('https://bmgaldo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bmgaldo/gradient/issues
Last updated 3 months agofrom:d853e5349b. Checks:OK: 4 ERROR: 3. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | ERROR | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
R-4.4-win | ERROR | Oct 31 2024 |
R-4.4-mac | OK | Oct 31 2024 |
R-4.3-win | ERROR | Oct 31 2024 |
R-4.3-mac | OK | Oct 31 2024 |
Exports:GetAlgoParamsoptim_SQGDE
Dependencies:codetoolsdoParallelforeachiterators
Readme and manuals
Help Manual
Help page | Topics |
---|---|
GetAlgoParams | GetAlgoParams |
optim_SQGDE | optim_SQGDE |